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Abstract
Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamflow, and an 
improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated 
response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has 
increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest 
Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of 
East Asia, central South America, and the Pacific coasts of Canada. Streamflow records largely confirm these precipitation 
changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer 
while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the 
drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over 
Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation 
and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El 
Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with 
the Interdecadal Pacific Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental 
discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, account-
ing for 90 % of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff 
and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central 
South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while 
the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. 
The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the 
observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, 
the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.

Keywords  Hydroclimate · Trends · Precipitation · Streamflow · Drought · PDSI · CMIP5 · Global land

1  Introduction

Increased CO2 and other greenhouse gases (GHGs) in the 
atmosphere will not only raise Earth’s surface temperature, 
but also induce large changes in precipitation, runoff and 
streamflow, drought and other hydroclimatic fields (Meehl 
et al. 2007; Scheff and Frierson 2012; Collins et al. 2013; 
Dai 2013a, 2016; Cook et al. 2014, 2020; Trenberth et al. 

2014; Zhao and Dai 2017; Dai et al. 2018), which may cause 
larger damages to human society and the environment than 
the concurring warming. Thus, documenting and under-
standing long-term changes in these hydroclimatic fields are 
critically important under our changing climate.

Under increasing GHGs, climate models project 
increased precipitation over most of the globe except for 
the subtropical subsidence regions (e.g., Meehl et al. 2007; 
Collins et al. 2013), where enhanced drying from increased 
vertical gradients of specific humidity and increased subsid-
ence make it hard to form clouds and precipitation in the 
future warmer climate (Chou et al. 2009; Dai et al. 2018; 
Huang et al. 2021). Surface runoff and streamflow changes 
generally follow those of precipitation (Meehl et al. 2007; 
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Collins et al. 2013; Zhao and Dai 2015; Dai 2016), although 
changes in precipitation characteristics (Trenberth et al. 
2003; Sun et al. 2007), evapotranspiration (Dong and Dai 
2017; Dai et al. 2018) and human activities (Döll et al. 2009; 
Vicente-Serrano et al. 2019) can induce additional features. 
Rising air temperatures, coupled with small decreases in 
near-surface relative humidity (Collins et al. 2013; Vicente-
Serrano et al. 2018; Chen et al. 2020), lead to large increases 
in atmospheric demand for moisture (often measured by 
potential evapotranspiration PET) over all land areas (Feng 
and Fu 2013; Scheff and Frierson 2014; Fu and Feng 2014; 
Fu et al. 2016; Zhao and Dai 2015, 2017). Combined with 
decreased precipitation over many subtropical regions and 
a flattening of the histograms of soil moisture, runoff and 
the Palmer Drought Severity Index (PDSI) (Zhao and Dai 
2015), the enhanced PET greatly increases the risk of future 
drought over most land areas (Burke and Brown 2008; Dai 
2011a, 2013a; Cook et al. 2014, 2020; Prudhomme et al. 
2014; Zhao and Dai 2015, 2017).

These model-projected long-term changes in response 
to increased GHGs are, however, often overshadowed by 
large internal variability, especially at the local and regional 
scales, making them unapparent in individual realizations 
(such as the observations or individual model simulations) 
during the recent and near-future decades (Deser et  al. 
2012a, b, 2014; Dai and Bloecker 2019). Furthermore, large 
uncertainties due to instrumental and sampling errors exist 
in the available datasets for precipitation, runoff and stream-
flow, PDSI and other hydroclimatic fields (Dai 2016; Dai 
and Zhao 2017); they make it difficult to reliably quantify 
historical changes in these fields over the global land (Tren-
berth et al. 2014). In contrast to the model-projected future 
changes, the historical changes also include externally-
forced response to episodic volcanic eruptions and dec-
adal variations in anthropogenic aerosols, ozone and CFCs 
(Meinshausen et al. 2011); these forced short-term changes 
are often merged with other internal variations (Hua et al. 
2019; Qin et al. 2020a, b), further complicating the detection 
and separation of the forced signal in historical data.

Many studies have attempted to quantify historical 
changes in the mean of land precipitation, streamflow, PDSI 
and other drought indices, although few of them were able to 
synthesize/compare these changes or quantify the changes 
resulting from external forcing and internal variability. For 
land precipitation, many raingauge-derived datasets go back 
to around 1900, but raingauge coverage was poor over many 
regions before the 1950s (Dai et al. 1997; Harris et al. 2014; 
Schneider et al. 2018; Sun et al. 2018); and these datasets 
have been used to quantify historical changes in monsoon 
rainfall (Wang and Ding 2006; Wang et al. 2012; Zhang 
and Zhou 2011), precipitation over dry and wet regions (Liu 
and Allen 2013; Huang et al. 2017) and global land (Dai 
and Zhao 2017). These studies show that precipitation has 

increased since 1950 over northern and eastern Europe, the 
central United States, northwestern Australia and southeast-
ern South American, but decreased over most Africa, East 
and South Asia, southern Europe, and eastern Australia (Dai 
and Zhao 2017); and some of these changes over the United 
State, Africa, Australia and South America are associated 
with the phase change in the Interdecadal Pacific Oscillation 
(IPO) (Dai 2013b; Dong and Dai 2015), rather than GHG-
induced global warming. This appears to be also the case for 
recent precipitation changes over the tropical Pacific (Gu and 
Adler 2013). The precipitation change patterns since 1950 
are broadly consistent among different datasets and largely 
confirmed by the basin-mean runoff changes inferred from 
streamflow records (Dai et al. 2009, 2016). The regional 
decreases in precipitation and increased PET under rising 
air temperatures lead to surface drying, as measured by 
PDSI and SPEI (Vicente-Serrano et al. 2020), since 1950 
over most Africa, East and South Asia, southern Europe, 
high-latitude North America and eastern Australia (Dai et al. 
2004; Dai 2011b; Trenberth et al. 2014; Dai and Zhao 2017; 
Vicente-Serrano et al. 2020), although uncertainties in radia-
tion and surface wind data as well as issues in land precipita-
tion data since the 1990s in some of the widely used datasets 
could weaken the PDSI trends (van der Schrier et al. 2011, 
2013; Sheffield et al. 2012; Dai and Zhao 2017).

As mentioned above, detecting anthropogenic influences 
in historical precipitation and other related hydroclimatic 
fields is difficult due to their large internal variability. Nev-
ertheless, precipitation increases in northern mid-high lati-
tudes and decreases in the subtropics in the 20th century (Dai 
et al. 1997) is attributed partly to human influences (Zhang 
et al. 2007). On the other hand, many studies attributed a 
large part of recent changes since the 1950s in regional pre-
cipitation over the United States, Africa, Australia and South 
America, as well as the tropical Pacific rainfall since 1979 
(Gu and Adler 2013), to the phase changes in the IPO (Dai 
2013a; Dong and Dai 2015) and the Atlantic Multidecadal 
Oscillation (AMO) (Knight et al. 2006; Hua et al. 2019), 
although some of the AMO-like multi-decadal variations 
may be forced by volcanic and anthropogenic aerosols (Qin 
et al. 2020a). The IPO-induced and other internal variability 
makes the local and regional precipitation trends since 1979 
statistically insignificant over most of the globe up to now 
and for the near future (Dai and Bloecker 2019). The inter-
nal variability also makes the PDSI trends since 1920 differ 
from the externally-forced response over the United State, 
West Africa, and other regions, even though the global-mean 
trend is consistent with the model-simulated change (Dai 
2013).

While many previous studies have examined historical 
changes in a single hydroclimatic field, very few of them 
have examined them together to make a physically consistent 
picture about historical hydroclimatic changes over global 
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land. In this study, I attempt to (1) update the trend analy-
sis up to 2018 for land precipitation, streamflow or runoff 
and PDSI using available new data; (2) compare, verify 
and synthesize their trends to present a more complete and 
convincing picture of the historical hydroclimatic trends; 
and (3) perform a first-order estimate of the contribution 
by historical external forcing to the historical trends using 
CMIP5-model simulated response and a maximum covari-
ance analysis (MCA). Here I focus on the mean changes in 
various hydroclimate fields, rather than changes in extremes 
such as drought events. Also, the goal of the comparison 
with model-simulated changes is to provide a large-scale 
assessment of whether the observed change patterns are 
qualitatively consistent with the observations, rather than 
to provide a quantitative attribution analysis, as done pre-
viously (e.g., Marvel et al. 2019; Bonfils et al. 2020). The 
results should provide an updated and more complete view 
on historical hydroclimatic trends and on the role of external 
forcing. This paper will also serve as the reference for our 
updated streamflow (https​://rda.ucar.edu/datas​ets/ds551​.0/) 
and PDSI (https​://rda.ucar.edu/datas​ets/ds299​.0/) datasets 
that have been widely used by the community.

2 � Data and method

We used the updated versions of the gridded monthly precip-
itation products (on 2.5o grids) from the Global Precipitation 
Climatology Centre (GPCC v2018 or v8, for 1891–2016; 
Schneider et al. 2018), the Climate Research Unit (CRU, TS 
4.02, for 1901–2017; Harris et al. 2014), a merged precipita-
tion product (referred to as DaiP) using precipitation from 
Dai et al. (1997) (for years before 1948), Chen et al. (2002) 
(for 1948–1978), and GPCP v2.3 dataset (for 1979–2018; 
Adler et al. 2018), and the University of Delaware precipi-
tation data set v5.01 for 1900–2017 (referred to as UDelP, 
see http://clima​te.geog.udel.edu/~clima​te/html_pages​/Globa​
l2017​/READM​E.Globa​lTsP2​017.html). These are analyzed 
precipitation products based on raingauge records, except for 
GPCP data, which also used satellite estimates over sparsely 
sampled land areas by raingauges. Typically, raingauge cov-
erages are poor over central Africa, the Amazon, the Tibetan 
Plateau and other sparsely populated areas, especially before 
about 1950. The coverage also decreases since the 1990s 
in all these products (Sheffield et al. 2012; Trenberth et al. 
2014) partly due to the time delay in the archiving process 
and loss of manually operated stations. For the period with 
good raingauge coverage from about 1950–1990, all these 
products show very similar global land precipitation vari-
ations, but they differ substantially for the earlier decades 
and the most recent years since the middle 1990s (Dai and 
Zhao 2017). The GPCC product used much more raingauge 
records and thus is likely to be more reliable than the other 

products for the recent years since the 1990s (Dai and Zhao 
2017). Thus, we will mainly use the GPCC product for long-
term precipitation trend analyses, although the other prod-
ucts were also examined. Since only the GPCP v2.3 product 
is continuously updated to near real time, we used the GPCP 
data for the last few years to extend the other products to the 
end of 2018 (the latest time with data in spring 2019 when I 
started the analysis) by adding GPCP’s anomalies (relative 
to 1961–1990 mean) to the 1961–1990 mean of the product 
being extended, so that all the products analyzed here end in 
December 2018 and are homogeneous. The GPCP used the 
land data analysis from GPCC and it has similar variations 
and change for land precipitation to GPCC and the other 
products for the period since 1979.

To update our continental discharge analysis (Dai and 
Trenberth 2002; Dai et al. 2009; Dai 2016), I devoted a 
major effort to obtain and process updated downstream 
river-flow gauge data from the Global Ruff Data Centre 
(https​://www.bafg.de) for about 220 ocean-reaching rivers 
around the world, from USGS (https​://nwis.water​data.usgs.
gov/nwis) for 71 U.S. rivers, the Water Service of Canada 
(http://www.ec.gc.ca/rhc-wsc/) for 15 Canadian rivers, and 
the Brazilian National Water Agency (http://www.snirh​
.gov.br/hidro​web/publi​co/apres​entac​ao.jsf) for 131 Brazil-
ian rivers. Together, 261 of the 921 world’s largest rivers 
included in the Dai and Trenberth river discharge dataset 
(https​://rda.ucar.edu/datas​ets/ds551​.0/) were updated to as 
late as December 2018. For updating our continental dis-
charge estimates of Dai et al. (2009), streamflow data for 
other 146 rivers were also updated to December 2018 using 
either basin-mean precipitation data or scPDSIpm that is 
significantly correlated with historical streamflow records 
using linear regression following Dai et al. (2009). Annual 
river flow rates are highly correlated with basin-mean pre-
cipitation rates for most of world’s major rivers (Dai et al. 
2009; Dai 2016), thus the river flow and precipitation data 
provide us an opportunity to cross check and verify the long-
term trends in these physically-related, but independently 
measured hydroclimatic fields.

Another hydroclimate field examined here is the self-
calibrated PDSI with the Penman-Monteith potential evap-
otranspiration (scPDSIpm), which is a calculated index 
using monthly precipitation, surface air temperature, and 
other meteorological data (Dai 2011b). The scPDSIpm is 
an improved version of the original PDSI devised by Palmer 
(1965); it is a smoothed measure of near-surface dryness 
departures estimated using a simple surface water balance 
model that has been used to quantify drought and arid-
ity changes over the United States and other regions (Dai 
2011b; van der Schrier et al. 2011, 2013). The use of the 
more realistic Penman-Monteith PET requires data for sur-
face net radiation, vapor pressure, surface air pressure and 
wind speed, whose historical data are less reliable (Dai and 

https://rda.ucar.edu/datasets/ds551.0/
https://rda.ucar.edu/datasets/ds299.0/
http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsP2017.html
http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsP2017.html
https://www.bafg.de
https://nwis.waterdata.usgs.gov/nwis
https://nwis.waterdata.usgs.gov/nwis
http://www.ec.gc.ca/rhc-wsc/
http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf
http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf
https://rda.ucar.edu/datasets/ds551.0/
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Zhao 2017). We used the CRU TS4.02 data for surface air 
temperature, vapor pressure and cloud cover, and other rea-
nalysis data for the other variables, as described in Dai and 
Zhao (2017). Because scPDSIpm used the same precipita-
tion products analyzed here, its changes are not independent 
of those in precipitation data, although the scPDSIpm also 
includes the influences from rising surface air temperatures 
and water vapor deficits. We included the scPDSIpm here 
as a measure of surface aridity partly because it or its vari-
ants have been widely used in the literature. Like all other 
drought indices, the PDSI has its limitations (Dai 2011a). 
However, our previous validation using observed soil mois-
ture, streamflow, and land water storage (Dai et al. 1997, 
2004; Dai 2011b) and comparisons with model-projected 
soil moisture and runoff changes (Zhao and Dai 2015) sug-
gest that it is a reasonable measure of aridity and drought 
that can help us quantify the drying effect from rising tem-
peratures alone.

Although the precipitation (P), streamflow or run-
off (R), and scPDSIpm data are available back to around 
1900 over many land areas, our trend analysis will focus on 
1950–2018 as data before 1950 are less reliable and have 
poor global coverage. We also focus on the annual-mean 
trends, although seasonal differences in P trends are exam-
ined. To estimate how much of the observed trends may 
result from historical GHG and other external forcing, we 
also analyzed the 1950–2018 trends in P, R, and scPDSIpm 
from the multi-model ensemble mean (MMM) of the all-
forcing historical (up to 2005) and RCP4.5 (for 2006–2018) 
simulations by the models (40 models for P, 33 models for 
R and 14 models for scPDSIpm) participated in the phase 
5 of the Coupled Model Inter-comparison Project (CMIP5) 
(Taylor et al. 2012; https​://pcmdi​.llnl.gov/mips/cmip5​/). We 
used the CMIP5 data because these model data were used 
and described in our previous studies (Zhao and Dai 2015, 
2017; Dai 2016; Dai et al. 2018) and the number of models 
with required data from the new CMIP6 archive was small 
at the time of my analysis. Besides comparing the trend pat-
terns between observations and the CMIP5 MMM, we also 
performed maximum covariance analyses (MCA, Bretherton 
et al. 1992) of the observed and model-simulated precipita-
tion or scPDSIpm fields, with the goal to identify the compo-
nent in historical P or scPDSIpm whose temporal and spatial 
patterns are similar to those in the CMIP5 MMM. Since 
the CMIP5 MMM represents primarily the forced response 
to GHG and other historical forcing as internal variations 
are uncorrelated among the individual model simulations 
and thus are smoothed out during the ensemble averaging, 
we may consider this component in the historical data as 
the forced response to historical GHG and other forcing. As 
the model-simulated historical changes may contain dec-
adal changes forced by historical changes in volcanic and 
anthropogenic aerosols (Qin et al. 2020a) that are absent in 

the future forcing, we also compare the historical and future 
change patterns to identify any regional differences.

3 � Historical trends from 1950 to 2018

3.1 � Historical changes in land precipitation, 
streamflow and discharge

Figure 1 shows the 1950–2018 trend maps for annual pre-
cipitation (from GPCCv8), basin-mean runoff inferred from 
trends in downstream river flow data, and scPDSIpm. The 
P trend patterns are similar in the other three datasets with 
some regional differences (not shown). In general, both the 
precipitation and streamflow records show wetting trends 
over the central and eastern US, Alaska, Southeast South 
America, mid-high latitude Asia, and Northwest Australia, 
but drying trends over most Africa, southern Europe, the 
Middle East, northern India, Northeast China, Japan, and 
eastern Australia (Fig.  1a, b). However, over northern 
Europe, precipitation increases in all the P products while 
the river flow data show mixed signals (Fig. 1a, b), likely 
due to insufficient streamflow data over there. Over the 
Amazon river basin, streamflow data show an insignificant 
increasing trend while precipitation data show both increases 
and decreases within the basin (Fig. 1a, b), which are also 
seen in the other P products. Overall, the trend patterns from 
the raingauge and streamflow records are broadly consistent 
with each other, which provides us some confidence in these 
trends. The scPDSIpm trend patterns largely follow those of 
precipitation, with widespread drying over Africa, southern 
Europe, the Middle East, Southeast Asia, eastern Australia, 
Northwest Canada, and parts of Brazil; but wetting over the 
regions with large precipitation increases.

The precipitation increases over mid-high latitude Eurasia 
occur mainly in the cold season, while the P increase over the 
US is most widespread during September–October–Novem-
ber (SON) (Fig. 2). Over western Australia, precipitation 
increases greatly during austral summer but decreases in 
its winter, while the drying over eastern Australia is par-
ticularly strong during March–April–May (MAM) (Fig. 2). 
Over Southeast South America, precipitation increases in 
all seasons except its winter when it decreases. On the other 
hand, precipitation over most Africa decreases throughout 
the year, especially during MAM and SON (Fig. 2). Thus, 
precipitation trends during 1950–2018 differ greatly among 
the seasons over many land regions.

To further examine the precipitation changes for the 16 
regions outlined in Fig. 1a, in Fig. 3 we show their region-
ally-averaged precipitation anomalies from 1950 to 2018 
using the four P datasets, which show similar variations and 
changes over most of the years for all the regions. Some 
noticeable differences are seen over Alaska, Northwest 

https://pcmdi.llnl.gov/mips/cmip5/
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North America (region 2, after 2013), the central-eastern 
US (after 2005), central Eurasia (before 1977), and Siberia 
(during the 1960s and 1970s for UDelP) (Fig. 3). Long-term 
P changes are evident for West and Southern Africa, the 
Mediterranean, central Eurasia, the Middle East, Siberia, 
and eastern Australia. In general, large year-to-year fluc-
tuations overshadow the long-term trend, making it less 
obvious. Some regions (e.g., West Africa and Siberia) show 

multi-decadal variations, rather than a monotonic decreasing 
or increasing trend from 1950 to 2018.

As an example, Fig.  4 shows the time series of the 
yearly (October–September) river flow rate from the far-
thest downstream gauge (thick solid line) together with 
the basin-averaged yearly precipitation rate (dashed line, 
from GPCCv8) for world’s six largest rivers. The two time 
series are significantly correlated for the six rivers (with the 

Fig. 1   Linear trends during 1950–2018 in annual a precipitation from 
GPCC v8 (in 0.1mm/day per 50 years), b runoff inferred from records 
of downstream river flow rates (in 0.1mm/day per 50 years), and c 
scPDSIpm. The GPCCv8 dataset, which ends in December 2016, was 
extended to December 2018 using anomalies from GPCP v2.3 data. 

Blank land areas in b do not have runoff into the oceans or do not 
have enough observations. Stippling indicates the trend is statistically 
significant at the 5 % level based on a Student t test with the autocor-
relation being accounted for. The 16 outlined boxes in a represent the 
16 regions used in Fig. 3 for regional precipitation
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correlation coefficient r ≈ 0.6–0.8). Given the large spa-
tial sampling errors in basin-mean precipitation (especially 
over the Brahmaputra and Amazon) and the variations and 
changes in evapotranspiration (ET) (Dong and Dai 2017), it 
is remarkable that the streamflow and precipitation correla-
tion would reach as high as over 0.80 for some of the rivers 
(e.g., the Orinoco and Changjiang or Yangtze). Such a high 
consistency between the two independent records suggests 
that the variations and long-term changes in these data are 
likely to be real, although some discrepancies exist during 
certain years, e.g., during 2007–2010 for Amazon, and dur-
ing 1984–1990 and 1994–1997 for Congo (Fig. 4). To the 
first order, the basin-mean precipitation appears to be the 
primary driver of the fluctuations and long-term changes 
in downstream yearly river flow rates for the world’s larg-
est rivers, while human influences (through damning and 
withdrawal of stream-water) and changes in ET play only a 
secondary role as noticed previously (Dai et al. 2009).

Streamflow in the Amazon river declined from the late 
1940s to around 1970 and then recovered to a stable and 
normal level with large interannual fluctuations compared 
with the 1950s and 1960s, and relatively low levels for 
2016–2018 (Fig. 4a). In contrast, streamflow in Congo was 
relatively high from around 1960–1971, thereafter it stayed 
in relatively low levels until the middle 1990s (Fig. 4b). 
Streamflow in Orinoco changed little during 1948–2018, 
with large multi-year fluctuations (e.g., low from 1957 to 

1966 and 1973–1976) (Fig. 4c), while an increasing trend 
from 1954 to 1993 is evident in the streamflow (and precipi-
tation) for the Mississippi river (Fig. 4f). In general, large 
year-to-year fluctuations overshadow any long-term changes 
in the streamflow records, although some multi-decadal and 
long-term trends are evident in some of the time series (e.g., 
for Congo, Orinoco, and Mississippi).

Continental freshwater discharge into the oceans rep-
resents a major water flux of the global water cycle that 
returns the water vapor flux transported from the oceans to 
land by winds back to the oceans (Trenberth et al. 2007). 

Fig. 2   Same as Fig. 1a but for seasonal precipitation trends based on the GPCP v8 dataset (data for 2017–2018 were based on GPCP v2.3)

Fig. 3   Time series of annual precipitation anomalies (relative to 
1950–2018 mean, in mm/day) from 1950–2018 averaged over the 16 
regions outlined in Fig. 1a based on the GPCCv8 (black), DaiP (red), 
CRU TS4.02 (blue), and University of Delaware (magenta) datasets. 
The 16 regions include: a  Alaska (130–167.5o W, 57.5–62.5o N), b 
Northwest North America (120–137.5o  W, 35–57.5o  N), c Central-
eastern US (60–110o W, 27.5–47.5o N), d  Southeast South America 
( 47.5–72.5o  W, 20–47.5o  S), (e) Northern Europe (10  W–30o  E, 
50–72.5o   N), f the Mediterranean region (10o W–30o E, 30–46o N), 
g West Africa (17.5o W–22.5o E, 0–20o N), h Southern Africa (12.5–
40o E, 5S–35o S), (i) Central Eurasia (30–97.5o E, 42.5–72.5oN), j the 
Middle East (30–65o  E, 23–40o  N), k Northern India (75–87.5o  E, 
22.5–32.5o  N), l Northeast China (110–127.5o  E, 35–47.5o  N), m 
Japan(122.5–127.5o  E, 22.5–27.5o  N; 127.5–132.5o  E, 25–32.5o  N; 
132.5–140o E, 30–40o N; and 140–145o E, 40–45o N), n Siberia (100–
170o E, 55–72.5o N), o Northwest Australia (115–137.5o E, 30–10o S), 
and p Eastern Australia (140–155o E, 17.5–40o S)

▸
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It also represents the renewal freshwater resource avail-
able to all inhabitants on land (Dai et al. 2009). Thus, 
variations and long-term changes in continental discharge 

have major implications to the global water cycle (e.g., the 
accumulation of water on land or in the oceans), sea-level 
rise and human society. Figure 5 updates the estimate of 
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Fig. 3   (continued)
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the global continental freshwater discharge of Dai et al. 
(2009) and Dai (2016) using the updated streamflow data 
(for 261 largest rivers) and the updated precipitation or 

scPDSIpm data (for other 146 rivers) that is correlated 
with streamflow and thus is used to extend or infill the gaps 
in the streamflow gauge records (cf. Fig. 4). As noticed 

Fig. 4   Time series from 1948–2018 of yearly (October of the previ-
ous year–September of the plotted year) mean streamflow rate (in 
km3 year− 1) from observations (thick solid line) and estimated using 
basin-mean PDSI or precipitation (thin solid line) at the farthest 
downstream station for world’s six largest rivers, with the river name 

(station name) shown on top of each panel. Also shown (dashed line) 
is the basin-averaged precipitation anomaly (right ordinate, normal-
ized by its standard deviation) from GPCC v8. The correlation r (D, 
P) between the thick solid and dashed lines is also shown
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previously (e.g., Dai et al. 2009), continental discharge is 
highly correlated with land precipitation (r = 0.67) dur-
ing 1948–2018, and they both correlate negatively with 
the Niño3.4 sea surface temperatures (SSTs) (r ≈ – 0.60) 
(Fig. 5). That is, land precipitation and continental dis-
charge tend to be below (above) normal during warm El 
Niños (cold La Niñas), as these events affect precipitation 
over many land areas (Dai and Wigley 2000). In particu-
lar, since 2011 the Niño3.4 SSTs have increased, leading 
to below normal land precipitation and discharge for the 
recent several years. While large multi-year variations 
dominate the Niño3.4 index and the land precipitation and 
discharge time series, decadal to multi-decadal variations 
(referred to as the Interdecadal Pacific Oscillation or IPO, 
Dong and Dai 2015) are evident in Fig. 5, with below-
normal (above-normal) land precipitation and discharge 
during the IPO warm phrase from 1977 to 1998 (cold 
phases from 1948 to 1976 and from about 1999–2014). 
Thus, the IPO’s influences on regional precipitation over 
the U.S. (Dai 2013b) and other regions (Dong and Dai 
2015) lead to decadal-multidecadal variations in global 
land precipitation and continental discharge with below-
normal (above-normal) values during IPO’s warm (cold) 
phases. The return to cold SST anomalies after the strong 
2015/2016 El Niño suggests that the IPO’s current cold 
phase, which started around 1999, may not be over yet, 

as the previous cold phase lasted for about 31 years from 
1946 to 1976 with reduced SST negative anomalies from 
the late 1950s to middle 1960s (Dai 2013).

3.2 � Historical drying trends in scPDSIpm

To understand the long-term changes in scPDSIpm, in 
Fig. 6 we plotted the global land-averaged meteorologi-
cal variables whose gridded values were used to calculate 
the local scPDSIpm. For surface air temperature (Tas), 
the variations and changes are very similar among three 
datasets, and thus we only used the CRUTEM4 (with its 
gaps infilled with data from CRU TS4.02) Tas data in the 
calculation. For precipitation, four datasets were used to 
create different versions of the scPDSIpm with the other 
forcing data being the same. The other forcing data include 
surface net radiation, which requires estimates of the sur-
face longwave and shortwave radiation, with the latter 
being estimated based on cloud cover data (Fig. 6d) from 
CRU TS4.02 (see Dai and Zhao 2017 for details). Besides 
precipitation, the other important driver of the scPDSIpm 
is the surface vapor pressure deficit (VPD, Fig. 6e), which 
was derived based on the CRU TS4.02 vapor pressure and 
Tas data. Figure 6f also shows the PET calculated using 
these forcing data (plus surface wind speed data from the 
20th century reanalysis, see Dai and Zhao 2017) and the 

Fig. 5   Yearly time series of October–September mean total continen-
tal discharge (in Sv or 1 × 106 m3 s− 1, excluding that from Greenland 
and Antarctica) from 1949–2004 (thick solid line) estimated based on 
streamflow observations from 925 world’s largest rivers (from Dai 
et al. 2009), and for 2005–2018 (thin solid line) estimated based on 
updated streamflow data for 407 of world’s largest rivers and a lin-
ear regression with the think solid line. The dashed line is the Octo-

ber–September mean precipitation averaged over global (60° S–75° 
N) land areas. The red line is the Nino3.4 (170° W–120° W, 5° S–5° 
N) SST index (positive downward, range from − 3.0 to + 3.0). Also 
shown are the correlation coefficients between the discharge (D), pre-
cipitation (P) and Nino3.4 index. The x axis indicates the year of the 
September (e.g., 1948 refers to the average for 10/1947-9/1948)
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Penman-Monteith equation (PET_pm) or the Thornthwaite 
equation (PET_th) (see Dai 2011b for details), as the PET 
is a critical factor in the Palmer model (Palmer 1965) used 
to calculate the PDSI.

Figure 6 shows that while surface radiation exhibits 
some decadal and multi-year variations (e.g., low values 
from 1972 to 1985 and 1996–2000) associated with cloudi-
ness changes, significant long-term trends exist mainly in 

Fig. 6   Globally (60o  S–75o  N)-averaged annual anomaly (relative to 
1950–2018 mean) time series of the meteorological forcing data over 
land used in this study: a surface air temperature [three lines overlap 
each other: black = CRUTEM4 (Osborn and Jones 2014), blue = CRU 
TS4.02 (Harris et al. 2014), magenta = Univ. of Delaware or UDel T), 
b precipitation (black = GPCC v8, blue = CRU TS4.02, red = DaiP, 
magenta = UDel, c surface net radiation (solid) and surface net solar 

radiation (dashed), both positive downward, d cloud cover (black 
solid), surface air pressure (black dashed) and wind speed (red), e 
surface air vapor pressure (solid) and vapor pressure deficit (dashed), 
and f calculated PET_pm (black solid), PET_th (black dashed, i.e., 
PET from the Thornthwaite Eq.  see Dai 2011b), and the PET_pm 
with constant T and vapor pressure (red)
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the VPD associated with rising Tas coupled with small 
changes in surface relative humidity (Dai 2006; Willett 
et al. 2019). The rising Tas and VPD lead to large increases 
in PET, especially in PET_th, which tends to overestimate 
the impact of surface warming on PET and thus on PDSI 
(Burke and Brown 2008; Dai 2011b; van der Shrier 2011). 
Thus, any long-term drying trends in the calculated scPD-
SIpm is likely caused by surface warming and the associated 
increase in PET, although below-normal precipitation in the 
1980s and 1990s, early 2000s, and around 2015 (due to the 
strong 2015/2016 El Niño, Fig. 5) also contributes to the 
dry conditions in these years (Fig. 7). As shown in Fig. 1, 
significant drying trends occurred over Africa, East Asia, 

southern Europe, eastern Australia and other regions, but 
they are partially offset by the wetting trends over central 
and northern Eurasia, the central US, Northwest Australia 
and other areas. As a result, the global-mean scPDSIpm 
(Fig. 7b) shows only a small decreasing (i.e., drying) trend 
from 1950 to 2018 (mainly from the early 1970s to middle 
1990s). The global-mean scPDSIpm shows large interannual 
variations that are caused primarily by land precipitation 
variations (Fig. 7) associated with El Niño-Southern Oscil-
lation (ENSO) events (Fig. 5). Substantial differences exist 
among the four land precipitation products since the middle 
1990s (Fig. 7a) due to the large decline in the number of 
rain-gauges with data (Sheffield et al. 2012; Trenberth et al. 
2014), with the GPCP v2.3 (used by DaiP) and UDelP being 
drier than the GPCCv8 and CRU TS4.02. These P differ-
ences contribute to the scPDSIpm differences for the recent 
20–30 years, with the GPCCv8 case being wetter relative to 
the CRU and DaiP cases (Fig. 7b). Nevertheless, the drying 
trend from the early 1970s to middle 1990s is evident in 
all the precipitation cases, although the global-mean arid-
ity conditions may differ substantially for the recent years 
when different precipitation products are used. This suggests 
that improvements to global land precipitation products are 
needed for the period since the middle 1990s.

Besides the declining precipitation over Africa and many 
other regions (Fig. 1a), rising Tas over land, especially over 
central and northern Eurasia, Alaska and northern Canada 
(Fig. 8c) is also driving up the PET (Fig. 6f), which in turn 
causes scPDSIpm to decrease (Fig. 8a, b). The surface 
warming is most pronounced since the late 1970s (Fig. 6a), 
when the drying effect of the warming becomes evident 
(Fig. 8a). Thus, the scPDSIpm trends shown in Fig. 1c, 
including the drying trends over East Asia, southern Europe, 
and parts of North America, result partly from the drying 
trend caused by the recent surface warming, although pre-
cipitation changes still dominate the scPDSIpm trends over 
central and northern Eurasia, Africa, South America, and 
Australia.

On decadal and longer time scales, the scPDSIpm from 
1920 to 2018 shows a long-term trend (drying over most of 
Africa, South and East Asia, southern Europe and wetting 
over most of the northern mid-high latitudes and Northwest 
Australia) that is associated with global warming (thus it is 
largely forced by GHG increases), together with a multi-
decadal mode (i.e., MCA2) that is associated with the multi-
decadal variability in Pacific and North Atlantic sea surface 
temperatures (Fig. 9). The spatial patterns of the second 
mode (Fig. 9c) resemble those of the IPO in the Pacific (Dai 
2013b; Dong and Dai 2015) and the Atlantic Multidecadal 
Variability (AMV) in the Atlantic (Enfield et al. 2001), and 
its temporal evolution (Fig. 9b) is correlated with the IPO 
(r = 0.79) and AMV (r = 0.58) during 1920–2014. Together, 
the IPO and AMV explain 90 % of the temporal variations 

Fig. 7   a Globally (60o  S–75o  N)-averaged annual land precipitation 
anomaly (relative to 1950–1979 mean) from 1950 to 2018 calcu-
lated using the CRU TS4.02 (blue), CPC (for 1950–1978) plus GPCP 
v3 (for 1979–2018) (red), GPCC v8 (black), and Willmott or UDel 
(magenta) dataset. The slope (b, mm/day per year) and its p-value are 
also shown for each line. b Globally (60o S–75o N)-averaged annual 
scPDSIpm time series from 1950 to 2018 calculated using the same 
meteorological forcing data (from CRU TS4.02) except for precipi-
tation, which was from CRU TS4.02 (blue), GPCC v8 (black), and 
CPC + GPCP (red). The slope (b, change per year) and its p value 
are also shown for each line. The UDelP case has a slope of – 0.008 
(p = 0.00) with much larger decreases for scPDSIpm and is not shown 
in b 
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of the second mode (Fig. 9b). Thus, this multidecadal mode 
is associated with the IPO and AMV, which are thought 
to originate from oceanic processes and air-sea interactions 
(Liu 2012). Therefore, we may consider the associated scP-
DSIpm mode (Fig. 9b,f) as being caused by the IPO and 
AMV. This mode shows that, on top of the long-term trend 
represented by the first mode (Fig. 9a,d), the period from 
about 1975–1998 was relatively dry (wet) over the Sahel, 
northeastern Asia, Alaska and northern Canada (southwest-
ern North America, most of South America, the Middle East, 
and most of Europe and Australia); whereas it is the opposite 
for the periods from about 1945–1974 and since about 1999 
(Fig. 9b,f). While the IPO since 1920 resulted primarily 

from internal variability (Hua et al. 2018), the recent AMV 
may have partly resulted from decadal variations in volcanic 
and anthropogenic aerosols (Qin et al. 2020b). Thus, the 
multi-decadal mode (i.e., MCA2) shown in Fig. 9 may have 
partly resulted from aerosol forcing, besides the contribution 
from the internal SST variability in the Pacific (i.e., IPO) 
and Atlantic (i.e., the internal component of the AMV, Qin 
et al. 2020b).

On interannual to multi-year time scales, the scPDSIpm is 
dominated by ENSO (Fig. 10a,c,d)., which causes wet con-
ditions over southwestern North America, southern South 
America, southwestern Asia but dry conditions over Australia, 
the maritime continent, South Asia, northern South America, 

Fig. 8   a Globally (60o S–75o N)-
averaged annual scPDSIpm 
time series from 1950 to 2018 
calculated using the same 
CPC + GPCP precipitation data 
and the same meteorological 
forcing data from CRU TS4.02 
except for surface air tempera-
ture (T) and vapor pressure (e) 
changes: the red line is with the 
T and e changes while the black 
line is without these changes, 
i.e., climatological values 
were used for T and e for the 
black line. b Distributions of 
the 1950–2018 trend differ-
ence between the scPDSIpm 
with and without the T and e 
changes. c The T 1950–2018 
trend map based on the CRU 
TS4.02 dataset
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Fig. 9   Temporal (a, b, black for SST, red for scPDSIpm) and spatial 
(c–f) patterns of the two leading modes from a maximum covari-
ance analysis (MCA, Bretherton et  al. 1992) of the observed SST 
(from HadSST3, Kennedy et  al. 2011) and the DaiP-based scPD-
SIpm from 1920–2018. Panels a, c and d are for the first MCA mode 
(MCA1) and b, e  and f  are for the second MCA mode (MCA2). 
Nine-year moving-averaged data were used in the analysis. The blue 
line in a  is the similarly smoothed global-mean surface temperature 
anomaly (on the right y-axis) obtained from the Climate Research 
Unit (CRU, http://www.cru.uea.ac.uk/cru/data/tempe​ratur​e/HadCR​
UT4-gl.dat, Osborn and Jones 2014). The dashed black line in b  is 
the estimated SST PC coefficient using a linear regression with the 
normalized IPO (blue, from Hua et al. 2018) and AMV (green, for a 

negative phase, from Qin et al. 2020b) indices: dashed black line = 
− 0.0006 + 0.0895*blue line + 0.0635*green line. In a-b, SFC is the 
squared fractional covariance explained by the MCA mode and the r1 
and r2 are the correlation coefficients between, respectively, the black 
and red, and black and blue lines. r3 is the correlation coefficient 
between the red and blue lines in a and the black and green lines in 
b. r4 in b is the correlation coefficient between the solid and dashed 
black lines. pVar is the percentage variance explained by the MCA 
mode in c–f. The corresponding MCA modes depict the statistically 
associated temporal and spatial patterns in the SST and scPDSIpm 
fields. The product of the temporal and spatial coefficients at a given 
location is the SST or scPDSIpm anomaly represented by the MCA 
mode

http://www.cru.uea.ac.uk/cru/data/temperature/HadCRUT4-gl.dat
http://www.cru.uea.ac.uk/cru/data/temperature/HadCRUT4-gl.dat
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and southern Africa during El Niño, and the opposite during 
La Niña (Fig. 10d). Interestingly, there is another interannual 
mode (MCA2) with warm SST anomalies in both the equato-
rial eastern Pacific and northwestern Pacific and cold SST 
anomalies in the western Pacific and tropical Atlantic that lag 
the ENSO mode by about six months (Fig. 10b,e). Thus, the 
SST anomalies of this mode peak around May-June following 
the December-January peak of the ENSO event (Fig. 10a). 
This suggests that this mode is also likely related to ENSO, 

despite its non-conventional ENSO-like SST patterns and 
the delayed temporal evolution. Associated with this SST 
mode, the scPDSIpm anomalies show quite different patterns 
compared with those associated with typical ENSO, with dry 
conditions over central Asia, most Europe, and southeastern 
Australia but wet conditions over Alaska and western Canada, 
most of South America, southern Africa, the Middle East and 
northeastern Asia (Fig. 10f).

Fig. 10   Same as Fig. 9 except 
for the two leading MCA modes 
of the high-pass filtered SST 
and scPDSIpm data; that is, 
the 109-month moving aver-
age was first removed from 
the monthly data and then the 
residuals were subjected to the 
MCA analysis. The r is the 
correlation coefficient between 
the black and red curves in a, 
b. The green curve in a is the 
similarly filtered Nino3.4 SST 
index. The blue curve in a is the 
black curve in b (i.e., the PC2 
of SSTs) shifted backward by 
six months and smoothed using 
7-month moving average. The r1 
(r2) is the correlation coefficient 
between the black and green 
(blue) curves in a 
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4 � Comparison with CMIP5 model‐simulated 
trends

4.1 � Differences in model‐simulated historical 
and future trends

Before comparing with the trends estimated from observa-
tional data, we first examine the model-simulated ensemble-
mean trends from 1950 to 2018 and from 2000 to 2099 for 
annual precipitation, runoff, and scPDSIpm in Fig. 11. The 
ensemble averaging over multi-model simulations smooths 
out most of the regional variations caused by internal vari-
ability, making Fig. 11 much smoother spatially than Fig. 1. 
The drying reflected by the scPDSIpm trend (Fig. 11c) is 
more widespread than that seen in precipitation or run-
off trend (Fig. 11a, b), mainly due to the additional dry-
ing caused by increased PET under rising air temperatures 
(Zhao and Dai 2015). Many of these historical trend pat-
terns are consistent with those expected to occur in the 21st 
century under increasing GHGs (Fig. 11d, f; Collins et al. 

2013; Zhao and Dai 2015, 2017; Dai et al. 2018), such as 
the increased (decreased) precipitation, runoff and scPD-
SIpm over most of North America and Eurasia (Southwest 
North America, northern and central South America, the 
Mediterranean region, and southern Europe). However, the 
large precipitation and runoff decreases over Southeast Asia 
during 1950–2018 are absent in the projected future changes 
(Fig. 11). Furthermore, compared with the changes in the 
21st century from the same model runs (Fig. 11d, f) and 
other CMIP5 models (Collins et al. 2013; Dai et al. 2018), 
over Northwest Australia precipitation and runoff increase 
during 1950–2018 whereas precipitation decreases and run-
off changes little there in the 21st century, and the drying 
over southern Brazil during 1950–2018 is more intense and 
widespread than in the 21st century while it is the opposite 
for northern Africa (Fig. 11).

Seasonal precipitation trend maps for 1950–2018 from 
the CMIP5 MMM (Fig. 12a–d) show patterns similar to 
those for annual precipitation (Fig. 11a), except that the wet-
ting trend over Northwest Australia is most pronounced in 

Fig. 11   a–c  Same as Fig.  1 except for the trends in the ensemble 
mean of a annual precipitation from 81 runs from 40 CMIP5 models, 
b total runoff from 66 runs from 33 CMIP5 models, and c scPDSIpm 
calculated using data from 14 runs from 14 CMIP5 models. The 
historical all-forcing (for 1950–2005) and the RCP4.5 scenario (for 

2006–2018) are used for the model simulations. The data are masked 
to have similar spatial coverage as in Fig. 1. d–f Same as a–c except 
for trends during 2000–2099 under the RCP4.5 scenario. Each row 
shares the color bar on the right side, with the units shown on top of 
the panels
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DJF and MAM but absent in JJA. The drying over Southeast 
Asia and northern-central South America is seen over all 
seasons, especially in SON for the South American drying 
(Fig. 12d). The drying over Central America is largest in 
JJA but lest in SON (Fig. 12c–d). In contrast, during the 21st 
century (Fig. 12e–h) precipitation decreases over Australia 
and increases in Southeast Asia in all seasons, while precipi-
tation over southern Brazil increases in DJF. Furthermore, 
the drying over Europe, the Middle East and northern Africa 

in JJA and MAM is more widespread in the 21st century 
than during 1950–2018 (Fig. 12). Thus, large differences in 
the model-simulated precipitation response to external forc-
ing between 1950–2018 and 2000–2099 exist over Australia 
(mainly in DJF and MAM), Southeast Asia (in all seasons), 
and a few other places.

The above regional differences in the model-simulated 
responses to external forcing between 1950–2018 and the 
21st century may partly result from the different aerosol 

Fig. 12   Linear trend maps in seasonal precipitation from the ensemble mean of 81 runs from 40 CMIP5 models during 1950–2018 (left column) 
and 2000–2099 (right column, RCP4.5 scenario)
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forcing during the two periods, since historical anthropo-
genic and volcanic aerosols, which differ in the RCP4.5 
scenario for the 21st century, may have played an impor-
tant role in the recent surface warming in the North Atlantic 
(Booth et al. 2012; Murphy et al. 2017; Bellomo et al. 2018; 
Hua et al. 2019; Qin et al. 2020b) and other regions (Qin 
et al. 2020a), and that the aerosol forcing may have caused 
a drying trend since the 1970s over Southeast Amazon and 
a wetting trend over the Sahel in West Africa (Hua et al. 
2019). The different precipitation responses over South-
east Asia and Northwest Australia between 1950–2018 and 
2000–2099 may also be related to different aerosol forcing 
over East Asia. However, how the historical aerosol forcing 
has contributed to the drying over Southeast Asia and south-
ern Brazil and the wetting over Northwest Australia requires 
further investigation.

4.2 � Comparison between observed and model‐
simulated historical trends

Many of the observed trend patterns shown in Fig. 1 are 
qualitatively (and statistically) consistent with the model-
simulated trends shown in Fig. 11a–c for the same period 
from 1950 to 2018. For example, increased precipitation and 
runoff and wetting trends of comparable magnitudes are seen 
in both observations and models over many northern mid-
high latitudes, Northwest Australia, and southeastern South 
America; while decreased precipitation and runoff and dry-
ing trends are seen over southern Europe, southern Africa, 
and Southeast Asia. These consistent trend patterns sug-
gest that GHG and other external forcing may have already 
caused detectable changes in these hydroclimatic fields dur-
ing 1950–2018. On the other hand, some of the regional 
trends shown in Fig. 1 are likely caused by multi-decadal 
internal variations and thus are not directly comparable 
to the forced trends shown in Fig. 11a–c. A more precise 
assessment of the statistical consistency or inconsistency 
between the observed and model-simulated trends would 
require a comparison of the observed trends with the 5th 
-95th percentiles of the model-simulated trends at each grid 
point, as done in Knutson and Zeng (2018) for historical 
precipitation trends. Also, internal variability should have a 
larger impact on the seasonal trends shown in Fig. 2, mak-
ing them less comparable with the forced trends shown in 
Fig. 12a–d.

To find out to what extent the trend patterns shown in 
Fig. 1 estimated from historical data, which include both 
externally-forced and internally-generated changes, are 
forced by external forcing, we used the SST field from 
the CMIP5 MMM as the forced response and performed 
an MCA analysis of the SST field together with the pre-
cipitation field from either CMIP5 MMM or observations. 
Figure 13 compares the leading MCA mode from these 

MCA analyses. Clearly, the MCA1 of the SST captures 
the global warming mode and it accounts for most (93.6 %) 
of the smoothed SST’s temporal-spatial variations dur-
ing 1920–2018 (Fig. 13a–b). Associated with this warm-
ing mode, precipitation in the models shows a trend patten 
that resembles the linear trend pattern shown in Fig. 11a, 
with drying over some subtropical regions and Southeast 
Asia but wetting elsewhere (Fig. 13c). Associated with 
the warming mode, the MCA1 in observed precipitation 
from both the GPCC v8 and DaiP shows a similar long-
term trend (Fig. 13a) with spatial patterns broadly consist-
ent with the model-simulated precipitation response, with 
wetting over northern mid-high latitudes, Australia, and 
southeastern South America, but drying over parts of South 
Asia and Africa, and central South America (Fig. 13c–e). 
As the observed precipitation is from one single realiza-
tion, it contains large unforced internal variations, leading 
to a much smaller fraction of the variance explained by this 
global warming mode than in the CMIP5 MMM (Fig. 13). 
Furthermore, the large internal variations make it difficult 
for the MCA technique to cleanly exact the forced precipi-
tation component from other changes at many locations 
(such as West Africa and East Asia) where precipitation’s 
internal variability is large. This is particularly true for the 
weaker forced signal represented by the second and third 
MCA modes of precipitation (figure not shown), which show 
consistent temporal coefficients but with different regional 
patterns between the CMIP5 MMM and observations.

For 9-year smoothed scPDSIpm, the first MCA mode 
is associated with the global warming (Fig. 14a), whose 
spatial patterns (Fig. 14d) resemble the trend map shown 
in Fig. 11c. This long-term trend mode is seen in histori-
cal scPDSIpm calculated based on either GPCC v8 P or 
DaiP, except over southwestern North America and northern 
Africa (Fig. 14a,d,g). The second and third MCA modes 
show multi-decadal changes over Africa, East Asia, and 
North America and other regions (Fig. 14b,c,e,f), which are 
likely forced by decadal variations in external forcing, such 
as anthropogenic and volcanic aerosols (Qin et al. 2020a, 
b). Many of these multi-decadal variations are evident in the 
historical scPDSIpm data (Fig. 14b,c,h,i), although notice-
able differences exist (e.g., over South Asia for MCA2, and 
over Africa for MCA3), again likely due to sampling errors 
(i.e., impact of internal variability) in the estimated MCAs 
for the historical scPDSIpm data.

In summary, the linear trend patterns (Figs. 1 and 11a–c) 
and the MCA patterns (Fig. 13) suggest that the recent wet-
ting (drying) trends over northern mid-high latitudes, North-
west Australia, and southeastern South America (southern 
Europe, Southeast Asia, and West and southern Africa) seen 
in historical data may be partly forced by external forcing; 
while the wetting trends over Southwest North America and 
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drying trend over eastern Australia may be mainly related to 
IPO and other internal variability.

5 � Summary and discussion

In this study, I have updated our streamflow and scPDSIpm 
datasets to December 2018 and used the updated data to 
present a synthesized picture of the changes from 1950 to 
2018 in land precipitation, streamflow, and scPDSIpm, an 

improved form of the PDSI that measures surface dryness or 
aridity relative to local mean conditions. A comparison with 
the CMIP5 model-simulated response to historical forcing is 
also made to assess how much of the historical changes may 
be forced by historical external forcing. In general, the rain-
gauge and streamflow records from independent measure-
ments show consistent change patterns, thus increasing our 
confidence in these historical data. Together, the raingauge 
and streamflow data suggest increased precipitation and 
runoff from 1950 to 2018 over mid-high latitude Eurasia, 

Fig. 13   Same as Fig.  9 except for the leading MCA mode of the 
9-year smoothed annual SST (black line in a) from the multi-model 
ensemble mean (MMM) of the 68 all-forcing runs by 34 CMIP5 
models and precipitation (red line in a) from the MMM of the 81 
all-forcing runs from 40 CMIP5 models. The CMIP5 all-forcing his-
torical runs were extended to 2018 using the corresponding RCP4.5 
runs. The leading MCA mode of the same CMIP5 SST and 9-year 

smoothed precipitation from GPCC v8 (blue line in a, and d) or DaiP 
(magenta line in a, and e) is also shown, with its temporal and spa-
tial patterns for SST are similar to those shown in a and b. The r in 
a is the correlation coefficient between the black line and red, blue, or 
magenta line, respectively. Panel b uses the left color bar while pan-
els c–e use the right color bar
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most North America, Southeast South America, and North-
west Australia; but decreased precipitation and runoff over 
most Africa, eastern Australia, the Mediterranean region, 
the Middle East, parts of East Asia, central South America, 
and the Pacific coasts of Canada. The wetting trend over 
Northwest Australia and Southeast South America is most 
pronounced in DJF while the drying over Africa and wet-
ting over mid-high latitude Eurasia are seen in all seasons. 

These precipitation changes and the drying caused by rising 
surface temperatures and increasing water vapor deficit have 
caused surface drying trends and increased risk of drought 
from 1950 to 2018 over Africa, southern Europe, East Asia, 
eastern Australia, Northwest Canada, and southern Brazil.

Besides the long-term changes, land precipitation and 
continental freshwater discharge also show large interannual 
and inter-decadal variations, with negative anomalies during 

Fig. 14   Same as Fig. 9 except 
for the three leading MCA 
modes of the 9-year smoothed 
annual scPDSIpm based on the 
GPCC v8 precipitation (red in 
a-c, and g–i) or DaiP (blue line 
in a–c) and from the multi-
model ensemble mean (MMM) 
(black line in a–c, and d–f) of 
the scPDSIpm from 14 CMIP5 
models. The CMIP5 all-forcing 
historical runs were extended to 
2018 using the corresponding 
RCP4.5 runs. The SFC, r and 
pVar from the model versus 
DaiP case are shown in the 
parentheses
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El Niño and following major volcanic eruptions in 1963, 
1982, and 1991; and their decadal variations are correlated 
with the IPO with IPO’s warm phase associated with below-
normal land precipitation and continental discharge. ENSO 
also dominates the inter-annual variations in scPDSIpm or 
surface aridity over global land, with wet (dry) conditions 
during El Niño over Southwest North America, southern 
South America, and southwestern Asia (northern South 
America, Australia, South Asia and southern Africa); and 
the opposite during La Niña. An ENSO-related mode with 
altered SST patterns and a delayed peak (by ~ 6 months) 
also has a significant impact on land aridity. On longer time 
scales, besides a global trend pattern, the scPDSIpm also 
shows a multidecadal mode with the period from 1975 to 
1998 being relatively dry (wet) over the Sahel, northeast-
ern Asia, Alaska and northern Canada (southwestern North 
America, most of South America, the Middle East, and 
most of Europe and Australia); whereas it is the opposite 
for the periods from about 1945–1974 and since about 1999. 
This multidecadal mode of land aridity is associated with 
the multidecadal variability in Pacific and North Atlantic 
SSTs; together the IPO and AMV account for about 90 % of 
the temporal variations of this mode. Although some of the 
recent AMV may be externally forced by decadal variations 
in volcanic and anthropogenic aerosols (Qin et al. 2020a, b), 
this result still suggests that the IPO and AMV dominate the 
multidecadal variations in land aridity. While the impact of 
the IPO and AMV on land precipitation (Dai 2013b; Dong 
and Dai 2015; Hua et al. 2018) and streamflow (Enfield 
2001; Knight et al. 2006) have been examined previously, 
and the ENSO’s impact on land aridity has also been noticed 
previously (Dai et al. 2004; Dai 2011b; Bonfils et al. 2017; 
Dai and Zhao 2017), the combined impact by the IPO and 
AMV on land aridity discussed here is a new finding.

CMIP5 multi-model ensemble mean shows decreased 
precipitation and runoff and increased aridity and risk of 
drought during 1950–2018 over Southwest North Amer-
ica, Central America, northern and central South America 
(including the Amazon), southern and West Africa, the Med-
iterranean region, and Southeast Asia; while the northern 
mid-high latitudes, Southeast South America, and Northwest 
Australia see increased precipitation and runoff. The linear 
trend patterns and the MCA patterns suggest that the recent 
wetting (drying) trends from 1950 to 2018 over the northern 
mid-high latitudes, Northwest Australia, and southeastern 
South America (southern Europe, Southeast Asia, and West 
and southern Africa) seen in historical data may be partly 
forced by external forcing; while the wetting trends over 
Southwest North America and drying trend over eastern 
Australia may be mainly related to IPO and other internal 
variability. Some of the regional trends during 1950–2018 
seen in CMIP5 MMM and observations, such as the dry-
ing over Southeast Asia (in all seasons) and wetting over 

Northwest Australia (mainly in DJF and MAM), are absent 
in the model projections for the 21st century. This suggests 
that recent volcanic and anthropogenic aerosols and other 
short-term forcing may have caused these regional changes. 
Since future emissions scenarios have large uncertainties 
regarding future volcanic eruptions and other short-term 
forcing, current model projections of the 21st century hydro-
climatic changes may contain large uncertainties over South-
east Asia, Northwest Australia, and other regions that are 
sensitive to such forcing.
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